Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions
نویسندگان
چکیده
In this article, we propose an adaptive group lasso procedure to efficiently estimate structural breaks in cointegrating regressions. It is well known that the estimator not simultaneously estimation consistent and model selection break settings. Hence, use a first step of diverging number breakpoint candidates produce weights for second estimation. We prove parameter changes are estimated consistently by show greater than true but still sufficiently close it. Then, these results has oracle properties if obtained from our Simulation proposed delivers expected results. An economic application long-run US money demand function demonstrates practical importance methodology.
منابع مشابه
Instrumental variables estimation of stationary and non-stationary cointegrating regressions
Instrumental variables estimation is classically employed to avoid simultaneous equations bias in a stable environment. Here we use it to improve upon ordinary least-squares estimation of cointegrating regressions between non-stationary and/or long memory stationary variables where the integration orders of regressor and disturbance sum to less than 1, as happens always for stationary regressor...
متن کاملCointegrating polynomial regressions: Fully modified OLS estimation and inference
This paper develops a fully modified OLS estimator for cointegrating polynomial regressions, i.e. for regressions including deterministic variables, integrated processes and powers of integrated processes as explanatory variables and stationary errors. The errors are allowed to be serially correlated and the regressors are allowed to be endogenous. The paper thus extends the fully modified appr...
متن کاملIdentication Robust Inference in Cointegrating Regressions
In cointegrating regressions, available estimators and test statistics are nuisance parameter dependent. This paper addresses this problem as an identi cation failure. We focus on set estimation of long-run coe¢ cients (denoted ). We check whether and to what degree popular estimation methods, speci cally the Maximum Likelihood of Johansen (1995), Fully Modi ed OLS [Phillips and Hansen (1990); ...
متن کاملCointegrating MiDaS Regressions and a MiDaS Test
This paper introduces cointegrating mixed data sampling (CoMiDaS) regressions, generalizing nonlinear MiDaS regressions in the extant literature. Under a linear mixed-frequency data-generating process, MiDaS regressions provide a parsimoniously parameterized nonlinear alternative when the linear forecasting model is over-parameterized and may be infeasible. In spite of potential correlation of ...
متن کاملNonlinear cointegrating regressions with nonstationary time series
This paper develops an asymptotic theory for a non-linear parametric co-integrating regression model. We establish a general framework for weak consistency that is easy to apply for various non-stationary time series, including partial sum of linear process and Harris recurrent Markov chain. We provide a limit distribution for the nonlinear least square estimator which significantly extends the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Time Series Analysis
سال: 2021
ISSN: ['1467-9892', '0143-9782']
DOI: https://doi.org/10.1111/jtsa.12593